Efficient *mono*- and *bis*-functionalization of 3,6-dichloropyridazine using $(tmp)_2Zn \cdot 2MgCl_2 \cdot 2LiCl^{\dagger}$

Stefan Wunderlich and Paul Knochel*

Received (in Cambridge, UK) 11th September 2008, Accepted 6th October 2008 First published as an Advance Article on the web 4th November 2008 DOI: 10.1039/b815903c

3,6-Dichloropyridazine undergoes a smooth metallation using $(tmp)_2Zn\cdot 2MgCl_2\cdot 2LiCl$. The resulting *bis*-organozinc species react with various electrophiles; subsequent functionalization *via* a second metallation proceeds readily; further reactions with hydrazine lead to highly substituted pyrazolo[3,4-*c*]pyridazines derivatives.

The directed metallation of aromatics and heteroaromatics is one of the important tools to functionalize these scaffolds.¹ Especially, the metallation of nitrogen-containing heterocycles is of great interest.² Using LiTMP or related methods, the metallation and successive reactions with electrophiles often lead to low yields due to the instability of lithiated heterocycles.³ Recently, we have reported the preparation of the neutral mixed-metal complex base (tmp)₂Zn·2MgCl₂·2LiCl (1).⁴ This base combines high reactivity with excellent functional groups tolerance. Sensitive heterocycles which are prone to undergo ring-opening like [1,3,4]-oxadiazole⁵ can be smoothly zincated using 1 (0.55 equiv.) at 25 °C and further functionalized. The base (tmp)₂Zn·2MgCl₂·2LiCl (1) is easily prepared by the reaction of tmpMgCl·LiCl⁶ with ZnCl₂ (Scheme 1). Herein, we wish to report the efficient functionalization of 3,6-dichloropyridazine (2) which is an important substrate for the preparation of polyfunctional pyridazine derivatives.3a,7

Thus, the reaction of 3,6-dichloropyridazine (2) with 1 gives the zincated intermediate 3 in over 90% yield within 2 h at -78 °C (Scheme 1). This new zinc reagent 3 can be reacted with various electrophiles (see Table 1).

Therefore, the reaction of the zinc reagent **3** with iodine afforded the iodinated 3,6-dichloropyridazine **4a** in 82% yield (Table 1, entry 1). Conventional methods provided this product in 32% yield.^{3a} The reaction with ethyl 2-(bromomethyl)-acrylate⁸ in the presence of CuCN·2LiCl⁹ (25 mol%) furnished the allylated product **4b** in 85% yield (entry 2). Furthermore, the zincated pyridazine derivate **3** can also be transmetallated with CuCN·2LiCl⁸ to promote the reaction with acid chlorides. The subsequent addition of various acid chlorides led to the ketones **4c**-**4e** in 66–73% yield within 16 h at –20 °C (entries 3–5). Moreover, after the addition of chloranil (0.6 equiv.)¹⁰ to **3**, the dimeric pyridazine **4f** was obtained in 88% yield (entry 6).

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ N \\ MgCl \cdot LiCl \end{array} \end{array} \xrightarrow{\begin{tabular}{c} ZnCl_2 \ (0.5 \ equiv.) \\ THF, \ 25 \ ^\circ C, \ 15 \ h \end{array} } \xrightarrow{\begin{tabular}{c} N) - Zn \cdot 2MgCl_2 \cdot 2LiCl \\ 1 \end{array} \end{array}$

Scheme 1

Remarkably, low-temperature Pd-catalyzed cross-coupling reactions¹¹ can also be performed using Pd(dba)₂ (5 mol%) and P(*o*-furyl)₃ (10 mol%) as a catalyst system with simultaneous warming of the reaction mixture from -78 °C to -20 °C within 4 h. Electron-poor as well as electron-rich electrophiles are leading to the functionalized biaryls **4g–i** in 76–81% yield (entries 7–9).

Various substituted 3,6-dichloropyridazine can be further functionalized using $(tmp)_2Zn\cdot 2MgCl_2\cdot 2LiCl(1)$ leading to the new zincated pyridazine of type **5** within 3 h at -78 °C (Scheme 2).

Therefore, the iodolysis of the metallated 3,6-dichloro,-4iodopyridazine (**4a**) gave the diiodide **6a** in 56% yield (entry 10). The zincation of **4c** with subsequent reaction with benzoyl chloride in the presence of CuCN·2LiCl⁸ provided the symmetrical *bis*-ketosubstituted pyridazine **6b** in 77% yield (entry 11). The ketone **4d** can also be further functionalized by the reaction with ethyl 2-(bromomethyl)acrylate⁸ in the presence of CuCN-2LiCl (25 mol%)⁹ giving the substituted pyridazine derivative **6c** in 75% yield (entry 12).

The ketones **4c** and **4d** can also be converted into the annelated heterocyclic system of type **7** using hydrazine-hydrate as ring-closing agent¹² within 15 min giving the corresponding pyrazolo[3,4-*c*]pyridazines **7a** and **7b** in 66–75% yield (Scheme 2). Additionally, the related thiopheno[2,3-*c*]-pyridazines **7a** and **7b** have been prepared by the reaction of **4c** and **4d** with HSCH₂CO₂Me in the presence of NEt₃.¹³ After 6 h in refluxing MeOH the annelated compounds **8a** and **8b** could be isolated in 79–85% yield (Scheme 3).

In summary, we have reported a highly efficient functionalization of 3,6-dichloropyridazine (2) with $(tmp)_2Zn\cdot 2MgCl_2\cdot 2LiCl$ (1). The smooth metallations are carried out at -78 °C and lead to various substituted pyridazines which are of high interest for their potential pharmaceutical properties.¹⁴

section and spectroscopic data. See DOI: 10.1039/b815903c

Department Chemie, Ludwig-Maximilians-Universität München, Butenandstr. 5-13, Haus F, 81377 München, Germany. E-mail: Paul.Knochel@cup.uni-muenchen.de; Fax: (+49)-89-2180-77680; Tel: (+49)-2180-77681 † Electronic supplementary information (ESI) available: Experimental

 Table 1 Products of type 4 and 5 obtained by mono or bis-zincation

^a Isolated yield of analytically pure product. ^b CuCN·2LiCl (25 mol%) was used. ^c CuCN·2LiCl (1.1 equiv.%) was used. ^d Obtained by palladium-catalyzed cross-coupling: Pd(dba)₂ (5 mol%) and tfp (10 mol%)

We thank the DFG and the SFB 749 for financial support. We also thank Chemetall GmbH (Frankfurt), Evonik Industries AG (Hanau) and BASF AG (Ludwigshafen) for the generous gift of chemicals.

References

Table 1 (continued)

7

8

9

- 1 (a) V. Snieckus, Chem. Rev., 1990, 90, 879; (b) J. Clayden, C. C. Stimson and M. Keenan, Chem. Commun., 2006, 1393; (c) M. Schlosser, Angew. Chem., Int. Ed., 2005, 44, 376; (d) K. W. Henderson and W. J. Kerr, Chem. Eur. J., 2001, 3431; (e) M. Yus and F. Foubelo, in Handbook of Functionalized Organometallics, ed. P Knochel, Wiley-VCH, Weinheim, Germany, 2005, vol. 1; (f) T. Imahori and Y. Kondo, J. Am. Chem. Soc., 2003, 125, 8082.
- 2 (a) A. Turck, N. Plé, F. Mongin and G. Quéguiner, Tetrahedron, 2001, 57, 4489; (b) F. Mongin and G. Quéguiner, Tetrahedron, 2001, 57, 4059; (c) F. Buron, N. Plé, A. Turck and G. Queguiner, J. Org. Chem., 2005, 70, 2616; (d) C. Fruit, A. Turck, N. Plé, L. Mojovic and G. Queguiner, Tetrahedron, 2001, 57, 9429; (e) M. R. Grimmett and B. Iddon, Heterocycles, 1995, 41, 1525;

(f) D. K. Anderson, J. A. Sikorski, D. B. Reitz and L. T. Pilla, J. Heterocycl. Chem., 1986, 23, 1257.

- 3 (a) A. Turck, N. Plé, L. Mojovic and G. Queguiner, J. Heterocycl. Chem., 1990, 27, 1377; (b) F. Chevallier and F. Mongin, Chem. Soc. Rev., 2008, 37(3), 595; (c) J. M. L'Helgoual'ch, A. Seggio, F. Chevallier, M. Yonehara, E. Jeanneau, M. Uchiyama and F. Mongin, J. Org. Chem., 2008, 73, 177.
- 4 S. H. Wunderlich and P. Knochel, Angew. Chem., Int. Ed., 2007, 46, 7685; for the use of tmp₂Zn, see: (a) M. L. Hlavinka and J. R. Hagadorn, Organometallics, 2007, 26, 4105; (b) M. L. Hlavinka, J. F. Greco and J. R. Hagadorn, Chem. Commun., 2005, 5304; (c) M. L. Hlavinka and J. R. Hagadorn, Tetrahedron Lett., 2006, 47, 5049.
- 5 C. Ainsworth, J. Am. Chem. Soc., 1955, 77, 1148.
- 6 A. Krasovskiy, V. Krasovskaya and P. Knochel, Angew. Chem., Int. Ed., 2006, 45, 2958.
- 7 L. Mojovic, A. Turck, N. Plé, M. Dorsy and B. Ndzi, *Tetrahedron*, 1996, **52**, 10417.
- 8 J. Villieras and M. Rambaud, Org. Synth., 1988, 66, 220.

- 9 (a) P. Knochel, M. C. P. Yeh, S. C. Berk and J. Talbert, J. Org. Chem., 1988, 53, 2390; (b) P. Knochel and S. A. Rao, J. Am. Chem. Soc., 1990, 112, 6146.
- 10 A. Krasovskiy, A. Tishkov, V. del Amo, H. Mayr and P. Knochel, *Angew. Chem.*, *Int. Ed.*, 2006, **45**, 5010.
- 11 (a) E. Negishi, L. F. Valente and M. Kobayashi, J. Am. Chem. Soc., 1980, **102**, 3298; (b) E. Negishi, Acc. Chem. Res., 1982, **15**, 340.
- 12 T. A. Eichhorn, S. Piesch and W. Ried, *Helv. Chim. Acta*, 1988, **71**, 988.
- 13 L. K. A. Rahman and R. M. Scrowston, J. Chem. Soc., Perkin Trans. 1, 1984, 385.
- 14 (a) J. Witherington and R. W. Ward, PCT Int. Appl. 2003, WO 2003080616, A1 20031002, CAN 139:292257, AN 2003:777799;
 (b) J. Witherington, V. Bordas, S. L. Garland, M. B. Deirdre and D. Smith, J. Bioorg. Med. Chem. Lett., 2003, 1577; (c) D. S. Patel and P. V. Bharatam, Eur. J. Med. Chem., 2008, 43, 949;
 (d) M. O. Taha, Y. Bustanji, M. A. S. Al-Ghussein, M. Mohammad, H. Zalloum, I. M. Al-Masri and N. Atallah, J. Med. Chem., 2008, 51, 2062.